
SR&ED Claim
By Greg Nacu, 2015

1) Change Management / DB Structure

What scientific or technological uncertainties did you attempt to 
overcome uncertainties that could not be removed using 
standard practice?

1. Over the previous few years we have been developing a 
commercial multi–location, retail point of sale system which is built on 
top of a RESTful API that backends on a multi–node, NoSQL 
database. When we began no one had ever tried to build a point of 
sale system on top of this kind of data store. As a consequence of this 
decision we unlocked many advantages but were navigating 
development waters that were entirely untested. One critical goal of 
the project was for remote clients to receive realtime updates about 
the state of products, customers, inventory and sales from other 
clients, and to also support offline availability.

2. In previous years we were able to utilize a novel feature of the 
data store designed for a limited number of trusted peers with high 
network availability to be able to exchange change information so that 
they can efficiently bring themselves into mutual consistency. We used 
this ability by trying to extend it to an unlimited number of untrusted 
clients by routing connections through a custom security layer. 
Attempting to do this was so new and untested that we were unable to 
anticipate what would happen when it scaled up to a large number of 
clients, some of which were without network availability for long 
periods of time, days or weeks.

3. Due to the fact that each client is only interested in a subset 
of all possible changes, when a client has been offline for more than a 
brief period of time, fetching changes required filtering the 
accumulated changes of all other clients. This is completely 



unscalable and led to reduced performance and unavailability of the 
data layer. The worst problem is that it turned out that clients with the 
least traffic were the most affected. The structure of the database was 
simply not designed for what we wanted it to do and we were left 
without any clear path to a solution.

What work did you perform in the tax year to overcome the 
scientific or technological uncertainties described above?

1. Initially we were unaware that any problem existed, because 
as mentioned above the more frequently an organization is tested the 
less affected it becomes by the problem. However unexpected data 
layer failures began to filter in as we grew our customer base. In order 
to understand how the problem manifests we had to uncover how this 
new data storage technology synchronizes its data between its nodes. 
Records in a database are stored in a heap each with a globally 
unique identifier. A primary index is used to be able to access a 
document by its id without any other information about what the record 
contains. Every time any record is created, modified or deleted an 
entry is made into a global changes log for the whole database. Each 
log entry is assigned a change sequence number. Clients store locally 
the latest sequence number that they are aware of. When the client is 
offline it misses realtime change events. When it comes back online it 
requests changes to its own data starting from its sequence number. It 
would be very efficient to give it all subsequent changes. However, the 
way we are trying to use it required us to filter the changed documents 
to only those involving this client's organization. The less frequently an 
organization produced changes, the more filtering of other 
organizations' data would be required. Filtering the data requires a 
centralized server to parse each data record into memory and apply 
logical filtering, this process is very inefficient and not scalable. As a 
result, periodically a client's request for changes would cause the data 
layer to timeout.

2. We considered and attempted several possible workarounds. 
One involved creating and updating indexes for each organization that 



would offload the work of filtering to the time that a change occurred. 
This would also have had the advantage of not having to repeat the 
filtering work with each request, which is how it was working and 
exacerbated the problem with each additional client an organization 
connected. Another attempted solution was to allow our data security 
layer to fetch unfiltered results from the data layer and then do the 
filtering at the last moment before sending to the client. This did 
alleviate pressure on the data layer but we found that it was not a 
workable solution because the burden of what is effectively busy work 
would be shifted onto our servers. In the short term we would have 
been able to deal with this by increasing the total number of servers 
we have, at greater expense, however projecting into the future this 
solution would eventually hit a failure point as well as we continued to 
board more customers. We also experimented with radically unrelated 
solutions involving reproducing the change sequencing system 
manually. This also proved to not be workable. In the end, none of our 
attempts to overcome the problem while maintaining the existing data 
layout was successful. Each solution we came up with had some 
drawback that introduced its own new problems. 

3. Eventually we realized that architecturally the database was 
not designed to be pressed into service in the way that we were trying 
to use it. The way we finally moved forward and resolved the problem 
was to redesign how our data is distributed across databases. Filtered 
replication allowed us segment the data between more than one 
database. Migrating each organization's data into its own database 
allows for each heap to generate its own change sequence number, 
and reading changes from a pre–segmented sequence does not 
require filtering the output on the server side. In order to make this 
new more scalable data arrangement possible, we had to rewrite 
significant portions of our data security layer to allow an authorization 
token to dynamically select the appropriate data heap with each 
request. We continue to have some dependencies on a central data 
store, however, because some cross organization lookups cannot be 
done efficiently across data heaps. We were also required to rewrite 
portions of our system that creates new organizations and validates 



activations to programmatically create and permission new databases.

What technological advancements did you achieve as a result of 
the work described above?

1. The transition in architecture that we were required to 
undergo has allowed us to continue to scale on top of the NoSQL data 
storage technology that we had originally taken a risk on. The 
improved data arrangement has enabled numerous benefits beyond 
increased performance and stability. The ability to segment the data 
further into, for example, different geographical regions while 
continuing to run through the same security layer is now possible. 
Backups of data on a per organization basis are now very efficient, 
and can be run on an interleaved schedule. Updating indexes when 
we introduced view changes are now much faster and can also be 
introduced on an interleaved schedule. This has led to less downtime 
required when releasing major new versions of our API.

2. In the unfortunate scenario when a customer leaves our 
product, which can happen for instance if they go out of business, 
their data can now much more easily be disabled or archived, and 
even if parked, left in place, it no longer contributes to the overhead of 
performing backups, view changes or searching the data of any other 
organization. All of this contributes to lowering operational costs and 
improving customer experience.

3. There are some downsides, for instance, view structure has 
to be maintained across multiple databases. Databases need to be 
created and assigned permissions programmatically. Some 
information needs to be stored in a central database in order to 
efficiently lookup activation codes and times. And there has been a 
general increase in server side code complexity required to support 
the new arrangement and also to support the transition parts of which 
are still in progress.



2) Asynchronous Report introducing 
TPProcessManager / Overcoming Memory Constraints 
on iPad

What scientific or technological uncertainties did you attempt to 
overcome uncertainties that could not be removed using 
standard practice?

1. [The product] is a clever new retail point of sale system for the 
iPad. One of our development goals was to have advanced realtime 
reporting available to the iPad but without the need to query a central 
server to compute the reporting results. Performing report calculations 
on our servers is inherently unscalable and would dramatically 
increase the cost per customer. There are no off–the–shelf 
components that do what we wanted [the product] to do so we had to 
design our own realtime data warehousing technique. Data is 
summarized by revenue, cost and inventory sold or returned per user, 
item, color and size. The data is stored in a tree and grouped by 
varying units of time, current day, current month, current year. Taxes 
and payments are similarly summarized but with less granularity due 
to how they apply.

2. In order for reporting to occur on the iPad the iPad 
downloads, caches and continually updates warehoused units. An 
initial load starts with 60 day units. Without touching the server 
complex reports with arbitrary filtering, slicing, grouping and sorting 
can be accomplished all inside the iPad, as long as the date range 
falls within the locally stored 60 days. If the user wants to go beyond 
the past 60 days the system will download more chunks of 
warehoused data in units of days and months.

3. We encountered two major problems. [The product] is 
architected around web technologies and can be run directly in a web 
browser. The first problem is that Javascript is single threaded. One 



process thread for updating the UI, processing user input and 
performing business logic as well as calculating report outcomes. As 
the number of reports grew and the complexity of reports expanded 
local report calculation began to encroach on usability. The second 
major problem is that the only standard solution for multi–threading in 
Javascript required a minimum doubling of our memory footprint. The 
iPad, especially older iPads, have very limited memory. iOS also has 
no support for memory paging. When our app tries to use too much 
memory the task is terminated. The app crashes.

What work did you perform in the tax year to overcome the 
scientific or technological uncertainties described above?

1. As we began to build out our reporting suite, the length of 
time that was required to compute the results of a report continued to 
grow. Because of the single threaded nature of Javascript the iPad's 
user interface would have to lock up while the report was being 
computed. We had to engineer a way to allow the iPad to compute 
report data without locking up the UI. Our initial attempt was to make 
use of a relatively new web technology that is still uncommonly used, 
webworkers. Webworkers allow an independent thread to execute 
concurrently with the main thread, it sounds like just what we need. 
However, webworkers were designed to prevent a type of memory 
corruption issue that was common in lower level operating system 
implementations of multiple threads. As a result, webworkers are 
granted no access whatsoever to the objects in the memory space of 
the main thread. The only way for code inside a webworker to 
compute reporting results is to copy large portions of main memory 
into the worker thread. To get just one thread we had to nearly double 
our total memory footprint. We completed this implementation without 
knowing how close we were coming to surpassing the memory 
limitations of the iPad.

2. Some of the customers we began boarding had larger 
datasets than we had originally anticipated. Instead of multiple 
hundreds of items, and multiple hundreds of customer accounts, they 



had between ten and twenty thousand items and between eight and 
fifteen thousand customers. Javascript is also a garbage collected 
language, which is a memory reclamation system whose performance 
depends on having lots of spare memory. As our memory footprint got 
closer to the limits, the iPad performance started to drop dramatically 
and the app would crash at unpredictable points. There were further 
complications to using webworkers. The only way to communicate 
with a webworker is via an asynchronous message channel. But if a 
worker is in a tight loop computing report results a message cannot 
interrupt it. So, when iOS would send low memory warnings there was 
no way to stop a worker from doing its work, and no responsive way to 
clean up unnecessary memory usage. Webworkers were simply never 
intended to be used the way we were trying to use them and were 
ultimately unsuited which sent us back to square one on solving our 
original problem. We do still make use of webworkers for some very 
constrained tasks, but we had to reimagine a solution for our report 
engine.

3. Drawing on experience with work in operating system theory, 
we decided it was necessary to design and implement a primitive 
cooperative multi–tasking process manager. A process manager is a 
piece of software that is designed to schedule units of work and to 
interleave those units and allot to them time according to their needs. 
However, a process manager cannot simply be put in place and 
expected to work. Every report model generator had to be refactored 
in such a way that the complete task of producing a model could be 
represented by hundreds or thousands of small independently 
executable steps. Nested loops had to be decomposed into 
anonymous function calls with enclosed variables that keep track of 
state. Then we wrote a process object that wraps a set of steps that 
need to be performed and the process can be registered with the 
process manager. This sort of solution is very low level, and is almost 
completely unheard of in web applications. Rewriting significant 
portions of our reporting system came with a lot of risk that the whole 
thing might not work. Cooperative multitasking was common in older 
operating systems from the late 80s early 90s. Their advantage is that 



they can be implemented in a very light weight manner and they share 
memory. The disadvantage is that one process can corrupt another 
process's memory, or fail to cooperate and lock the system up. They 
are not well suited to systems that are expected to integrate 
processes that are written by non–cooperative third parties. Because 
all the processes required to cooperate are parts of the same 
application it is a very good solution. 

What technological advancements did you achieve as a result of 
the work described above?

1. An intermediate effort along the route to the full process 
managed solution was to start by breaking the tasks down into 
independently runnable chunks of code, but they were not scheduled 
centrally. Moving our report modeling code over to TPProcess gave us 
a huge, tremendous breakthrough in speed. Report model generation 
increased in speed somewhere between 10 and 40 times over our 
previous attempts. The reason is because small units of code that are 
not centrally organized have no way of knowing whether they are 
taking up too much time and locking up the UI or not using enough 
time to be efficient.

2. The TPProcessManager solved numerous problems and 
unlocked unforeseen advantages. The webworker only gave us one 
more thread at the cost of twice as much memory. Within that thread 
we could still only process one report at a time. The 
TPProcessManager allowed for multiple reports to be generated 
simultaneously without locking up the UI and without any unnecessary 
duplication of memory. It also gave us the ability to update the UI with 
report generation progress, so we were able to add progress bars to 
present to the user. Additional advantages included the ability to 
interrupt a report model's generation. If the user doesn't want to wait 
for the current report, but wants to change filters, the current report 
generation can now be cancelled mid–flight and started over with new 
filters. This was impossible with webworkers.



3. However, we saw even further advantages from this new 
system. When iOS gives us a memory warning the 
TPProcessManager can immediately stop giving time to inessential 
processes, and present a low memory warning to the user. In most 
cases this is enough for other iOS processes to give us some memory 
they don't need. If no more low memory warnings come in for 30 
seconds TPProcessManager automatically resumes processing. The 
combination of not needing to duplicate any memory and the ability to 
respond to low memory warnings dramatically increased the total 
number of data records an iPad can handle. This opens up [the 
product] to support a range of higher end businesses.


